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This review analyses a wide range of experimental data on the creep of ceramic materials and 
reveals many similarities with the creep of metals. It is demonstrated that there are two important 
differences in the creep behaviour of ceramics: (1) there is an enhanced role of diffusion creep, 
and (2) in the power-law regime, ceramics divide into two categories with stress exponents 
of ~ 5 and ~3 ,  respectively. It is concluded that the behaviour with an exponent of ,-~5 rep- 
resents fully ductile behaviour as in fcc  metals, whereas the behaviour with an exponent of 

3 is due to dislocation climb from Bardeen-Herring sources under conditions where there is 
either a lack of five independent slip systems or, if five independent slip systems are available, 
a lack of interpenetration of these systems. 

1 .  I n t r o d u c t i o n  
The creep behaviour of ceramic materials is of con- 
siderable current interest because of the development 
of structural ceramics for applications at high tem- 
peratures. Part 1 of  this review [1] gave a very brief 
outline of possible creep mechanisms and a detailed 
compilation, in tabular form, of the various creep 
data published in the scientific literature on ceramic 
materials in single crystal, bicrystal and polycrystal- 
line form. In Part 2, the data are analysed and com- 
pared for several selected materials, the substructural 
features are examined, and there is also a direct com- 
parison with the general trends anticipated in metals. 

As noted in Part 1 [1], the steady-state creep rate, 8, 
may be expressed in the form 

- k ~  (1) 

where D is the appropriate diffusion coefficient, G is 
the shear modulus, b is the Burgers vector, k is 
Boltzmann's constant, T is the absolute temperature, 
d is the grain size, a is the applied stress, p is the 
exponent of the inverse grain size, n is the stress 
exponent, and A is a dimensionless constant. The 
diffusion coefficient, D, is given by 

D = Do exp ( - Q / R T )  (2) 

where D o is a frequency factor, Q is the activation 
energy for the appropriate diffusion process, and R is 
the gas constant (8.31Jmol 1K 1). 

It follows from Equation 1 that a comparison of 
data may be conveniently achieved by logarithmically 
plotting the individual datum points in the form 
(~k T/DGb) (d/b) p against ~/G. 
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A further simplification is possible because, as 
noted in Part 1 [1], lattice creep mechanisms are based 
on the intragranular movement of dislocations and, 
by definition, they require that p = 0. Thus, for 
materials exhibiting intragranular dislocation creep, 
the data may be logarithmically plotted as ~kT/DGb 
against cr/G. 

In general, the creep behaviour of polycrystalline 
ceramics falls into two distinct categories. Many 
ceramics exhibit a stress exponent close to 1 and a 
value of p which is typically ~ 2 to 3. There are also 
many ceramics exhibiting a stress exponent of ~ 3 to 
5 and creep rates which are independent of grain size 
so that p = 0. These two categories of behaviour are 
interpreted in terms of boundary creep mechanisms 
and lattice creep mechanisms, respectively: the various 
possible creep mechanisms were summarized in Tables 
I and II of Part 1 [1]. 

This report is divided into four parts. First, data are 
collected and plotted graphically for several materials 
exhibiting a stress exponent close to 1. Second, a 
similar correlation is presented for several ceramics 
exhibiting stress exponents of ~ 3 to 5. (It should be 
noted that an attempt was made to include in these 
compilations all data exhibiting either n -~ 1 or  n -~ 3 

to 5 for materials where the diffusion coefficients are 
known reasonably well. In practice, there are often 
some difficulties in deciding on the appropriate 
diffusion coefficients, and these problems, and the 
relevant creep models, are discussed in detail in each 
section.) Third, the substructural parameters are 
presented graphically for several ceramics. Fourth, the 
creep behaviour of ceramics is compared directly with 
the established creep behaviour of metals. 



2. C e r a m i c s  e x h i b i t i n g  n -~ 1 
2.1. Creep mechanisms 
When a ceramic material exhibits a stress exponent 
close to 1, there is usually also a dependence on grain 
size so that p v a 0 and the behaviour is attributed to 
some form of diffusion creep. (An exception to this 
rule is Harper Dorn creep where n = 1 and p = 0. 
Harper-Dorn creep is of relatively minor importance 
in ceramics, but the process is considered briefly at the 
end of this section.) In this creep process, vacancies 
diffuse from those grain boundaries situated more 
nearly perpendicular to the tensile axis where the 
vacancy concentration is above the equilibrium value 
to those grain boundaries situated more nearly paral- 
lel to the tensile axis where the vacancy concentration 
is below the equilibrium value. 

If the vacancies flow through the grains, the process 
is termed Nabarro-Herring creep [2, 3] and the steady- 
state creep rate is given by 

B1 flD1 ~r 
= d2kT (3) 

where f~ is the atomic volume, D~ is the coefficient for 
lattice self-diffusion and B I is a constant. The cal- 
culated values of B1 range from ~ 12-40 for different 
experimental conditions [4] but Herring [3] obtained 
BI = 13.3 for polycrystals having complete grain- 
boundary relaxation tested in uniaxial tension. 

Taking B 1 = 13.3 and f2 = 0.7b 3, Equation 3 may 
be expressed in the form of Equation 1 as 

DIGb(b)2(G ) = 9.3 ~ -  (4) 

If the vacancies flow along the grain boundaries, the 
process is termed Coble creep [5] and the steady-state 
creep rate is given by 

150~')~Dg b O" 
- 7cd3kT (5) 

where 6 is the effective width of the grain boundary for 
vacancy diffusion and Og b is the coefficient for grain- 
boundary diffusion. 

Again, taking f~ = 0.7b 3, Equation 5 becomes 

= 33.4 Dg b ~ (6) 

A comparison of Equations 4 and 6 shows that 
Coble creep is favoured over Nabarro-Herring creep 
when the grain size is very small (because the values of 
p are 3 and 2 for Coble and Nabarro-Herring creep, 
respectively) and at the lower testing temperatures 
(because Qgb < Q1, where Qgb and Ql are the acti- 
vation energies for grain-boundary and lattice dif- 
fusion, respectively). 

In practice, the Nabarro Herring and Coble creep 
processes operate independently, so that the rates are 
additive and the total creep rate is given by 

The situation is more complex in ceramics than 
metals because of the presence of two ionic species. 

The deformation of ceramic grains results from flow 
of both the cations and the anions and, in the steady- 
state condition, the total flux of these two components 
must be in the stoichiometric ratio. Thus, considering 
the possibilities of cation and anion diffusion along 
both lattice and grain-boundary paths, the total dif- 
fusion creep rate of a ceramic leads to a modification 
of Equation 7 given by [6, 7] 

= 9.3 ({(1/~)[Dc0)+ 3.6Do(gb)(6c/d)]}/ 

{1 + (~) [Dc(,) + 3.6Dc(gb)(6c/d)] }) 
[Da(0 + 3.6D,(gb)(6a/d)] 

where Do denotes diffusion of the cation, Da denotes 
diffusion of the anion, 6~ and 6a are the effective grain- 
boundary widths for the cation and anion, respectively, 
and/3 and c~ are the valences of the cation and anion, 
respectively. 

Equation 8 becomes simplified in practice because 
of the large differences in the values of the individual 
diffusion coefficients. The various implications of 
Equation 8 were summarized earlier in tabular form 
by Evans and Langdon [8] and the overall conclusion 
is that the observed creep rates are determined by the 
movement of the slower diffusing species along the 
faster diffusion path. 

As noted earlier, an additional mechanism giving 
n = 1 is Harper Dorn creep. This process was first 
identified by Harper and Dorn [9] in creep experi- 
ments on pure aluminium, and it was subsequently 
confirmed in independent experiments on aluminium 
and on several other metals: a detailed summary of 
this work is given by Yavari et al. [10]. 

All of the published data for this mechanism 
indicate a creep rate of the form [10] 

~- BHD ~ -  (9) 

where BHD is a constant having an experimental value 
of the order of 10 i1. 

Equation 9 is reasonably consistent with the climb 
of edge dislocations under saturated conditions [11]. 
The latter mechanism gives [12] 

2~b2 DIGb (G ) (10) 
= In (1~01rib) kT 

where ¢ is the dislocation density. Taking the experi- 
mentally measured value of Q _~ 5 x 103cm 2, 
Equation 10 reduces to Equation 9 with BHD --~ 2 X 
10 -12" 

Inspection of Equation 9 shows that Harper- 
Dorn creep predicts n = 1 and no dependence on 
grain size so that p = 0. Thus, Harper-Dorn creep 
becomes important only when the grain size is large 
(typically > 400#m [11]). 

Although it is reasonable to assume that Harper- 
Dorn creep occurs in non-metallic materials, there is 
very little experimental evidence for this mechanism 
because most of the experiments have been performed 



T A B L E  I Values  of  the mate r ia l  pa ramete r s  

Mate r ia l  D (cm 2 sec 1), Go (MPa)  AG ( M P a K  -1) b (cm) 

References 

D G 

A1203 DI(O 2 ) = 2 x 103 exp (-635000/RT) 1.71 x 105 

DI(A13+) = 28 exp (-476000/RT) 

M g O  Dl(O 2-)  = 2.5 x lO-6exp(--261000/RT) 1.387 x 105 

DI(Mg 2+) = 2.49 x I0 ~ exp (-330000/RT) 

BeO Dl(O 2-)  = 2.7 x 10 5 e x p  (--284000/RT) 1.86 x 105 

DI(Be 2+) = 1.5 exp (--384000/RT) 

SiC Dl(Si4+)(e)  = 2.6 x 108 exp (--840000/RT) 1.6 x l0  s 

Dl(Sig+)(fi) ~ 8.4 x 107 exp (-- 911000/R T) 

Si3N 4 DI(N 3 )(~) = 1.2 x 10 -12 exp ( 233000/RT) + 1.3 x 105~ 

UO 2 DI(U 4+) = 6.8 x 10 -5 exp ( 410000/RT) 8.9 × 104 

ThO z DI(Th 4+) = 1.25 x 10 -7 exp (-245000/RT) 9.0 × 104 

NaC1 DI(Cl ) = 1.2 x 102 exp (-214000/RT) 1.79 x 104 

LiF  D~(F ) = 64 exp (-212000/RT) 5.52 x 104 

KCI DL(C1 ) = 2.I exp ( -  189000/RT) 1.225 x 104 

UC / ~ ( U  4+) = 7.5 x 10 -5 exp (-339000/RT) 2.058 x 106 

Fe203 DI(O 2 ) - 2.0 exp (--326000/RT) 9.28 x 104 

ZrO 2 Dl(Zr 4+) = 3.5 x 10 -2 exp ( 387000/RT) 1.54 x 105 

23.4 4.75 x 10 -8 
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19 3.96 x 10 8 

9.6 3.99 x 10 8 
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16.1 3.51 x 10 -8 
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35.2 2.57 x I0 8 
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*Ac t iva t ion  energies in J mol  -I  (R = 8.31 J m o l  IK-L) .  

+Measured  by i so tope  exchange  a s suming  rapid  b o u n d a r y  diffusion of  N. 

; V a l u e  of  G at test t empera tu re  of  1748 K. 

§Est imated f rom b = (f~/0.7) I/3. 

outside of the Harper-Dorn range using polycrystal- 
line samples with very small grain sizes. There is 
evidence for Harper-Dorn creep in two sets of experi- 
mental data using non-metallic single crystals, on 
KZnF 3 [13] and NaC! [14], respectively, and it is also 
possible to interpret experimental data on single crys- 
tal and polycrystalline CaO [15] in terms of the 
Ha ri~er-Dorn process [16]. However, in view of the 
paucity of data on Harper-Dorn creep in ceramics, 
this mechanism is not considered in the following 
section. 

2.2. Correlat ion b e t w e e n  var ious  materials  
It was assumed in early work on ceramics that, if 
lattice diffusion controls the creep rate, the diffusion 
of the slower moving species through the lattice is 
rate-controlling (usually the anion) and the diffusion 
of the faster moving species through the lattice may be 
neglected (usually the cation). However, it was first 
pointed out by Paladino and Coble [17] that the creep 
of A120 3 is controlled by diffusion of the faster moving 
aluminium cation. This observation was explained by 
noting that the oxygen anion diffuses extremely 
rapidly along the grain boundaries, and it was suggest- 
ed that the grain-boundary diffusion of oxygen was 
faster than either the boundary or lattice diffusion of 
aluminium. More recently, similar behaviour has been 
ascribed to some other materials, e.g. MgO, BeO, etc. 

A consequence of this effect is that it cannot be 
assumed, a priori, that either anion or cation diffusion 
controls the creep, rate, and thus there is a difficulty in 
correlating the data for different materials because of 
uncertainties in the precise values of the diffusion 
coefficients. 

In this report, the data are graphically presented for 
the materials exhibiting n ~- 1, and in each case the 
diffusion coefficient was selected to provide the best fit 
with the theoretical model. In most cases, the best fit 
was obtained using diffusion data for the more rapidly 
diffusing species through the crystal lattice. 

Figs 1 to 4 show plots for several materials in the 
form (~kT/DGb) (d/b) 2 against a/G. These plots follow 
from Equation 4, and the broken lines with n = 1 are 
the predictions for Nabarro-Herring creep using 
B~ = 13.3 in Equation 3. Figs 1 to 4 cover all of the 
data from Part 1 [1] where sufficient results are avail- 
able and it seems that Nabarro-Herring creep is rate- 
controlling; the plots exclude the limited experimental 
data giving n "~ 1 and p ~- 3 because this indicates a 
dominance by Coble diffusion creep and there are too 
few measurements of the relevant grain-boundary dif- 
fusion coefficients for any meaningful comparisons. 

Table I lists the various values, and appropriate 
references, for D, G and b for each material docu- 
mented in Figs 1 to 4. The shear modulus, G, was 
estimated at the appropriate temperature using the 
expression 

G = Go - (AG) T (11) 

where G o is the value of the shear modulus obtained by 
linear extrapolation from high temperatures to absol- 
ute zero and AG is the variation in shear modulus per 
degree Kelvin. 

Fig. 1 shows data for A1203 containing no additives 
[47-49] using D = D~ (A13+), Fig. 2 shows data for 
AI20 3 containing various levels of MgO additions 
[48, 50-52] using D = D~ (AP +), Fig. 3 shows data for 
MgO [53], BeO [54, 55], ~-SiC [56] and S i 3 N  4 [57] using 
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values for D ofDi (MgZ+), Dl (Be2+), D~ (Si 4+) (~) and 
D~ (N 3 ) (~), respectively, and Fig. 4 shows data for 
UO2 [58 63] and ThO2 [58] using DI (U 4+) and D 1 
(Th 4+ ), respectively° 

Inspection of Figs 1 to 4 shows that the experi- 
mental datum points lie close to a slope of n = 1 for 
any selected material and testing condition, and the 
experimental creep rates generally agree with the 
predicted rate for Nabarro Herring creep to within 
about one or two orders of magnitude. Three specific 
reasons may be cited for the discrepancies between the 
predicted rates and the experimental rates. First, the 
measured creep rates tend to vary with the mode of 
testing. In Fig. 2 for A1203 doped with MgO, for 
example, the tensile results by Davies [51] are faster 
than the bending results of Folweiler [50] and Heuer 
et al. [48], and both of these sets are faster than the 
results in compression by Cannon and Sherby [52]. In 
fact, the latter results are in very close agreement with 
the theoretical prediction. Second, the diffusion coef- 
ficients, and therefore the creep rates, vary with the 
level of impurities, and it is doubtful whether the creep 
rates are ever strictly controlled by intrinsic diffusion. 
For example, Fig. 1 reveals large variations in the data 
for A1203 where no impurities were intentionally 
added, although each individual result gives a stress 
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Figure 1 Normalized creep rate plotted against 
normalized stress for Nabarro Herring creep in 
Al~O3 containing no additives [47-49]. 

exponent close to 1. Third, discrepancies arise when 
the compositions deviate from stoichiometry as, for 
example, in UO2. Although Fig. 4 was constructed 
using data from materials which were judged to be 
close to stoichiometric, the large variations in the 
datum points for the different materials are probably 
due to small deviations from stoichiometry. 

The results for Si3N 4 and e-SiC in Fig. 3 are of 
particular interest. 

Many creep studies have been reported on a variety 
of hot-pressed, sintered and reaction-bonded silicon 
nitride materials. In most cases, the experimental 
creep rates depend upon the presence of a glassy phase 
at the grain boundaries and/or triple points so that a 
comparison with Nabarro-Herring diffusion creep 
is meaningless. However, it appears that the creep 
data of Seltzer [57] on reaction-bonded NC350 silicon 
nitride may be ascribed to the Nabarro-Herring or 
Coble mechanisms. The NC350 material contained a 
low impurity level and probably little or no glassy 
grain-boundary phase, and it exhibited the lowest 
creep rate of any silicon nitride tested to date. Internal 
oxidation was apparently prevented in this material by 
a fine pore structure. As indicated in Fig. 3, the creep 
results on NC350 Si3N4 give a stress exponent of 1 and 
the rates agree with the Nabarro-Herring mechanism 
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Figure 2 Normalized creep rate plotted 
against normalized stress for Nabarro- 
Herring creep in AI203 containing various 
levels of MgO additions [48, 50-52]. 

Figure 3 Normalized creep rate plotted against 
normalized stress for Nabarro-Herring creep in (zx) 
MgO [53], (O, e) BeO [54, 55], fin) c~-SiC [56] and 
(v) Si3N 4 [57]. 
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Figure 4 Normalized creep rate plotted against 
normalized stress for Nabarro-Herring creep in 
UO2 [58 63] and ThO 2 [58]. 

to within a factor of about four times. It was assumed 
that nitrogen diffusion was rate-controlling and dif- 
fusion was determined by gas-solid isotope exchange. 
The grain size of the reaction bonded NC350 silicon 
nitride was not known but typical values vary between 
0.04 and 0.05 #m. A value of 0.05 #m was used here. 

For e-SiC, the material had a nearly equiaxed grain 
size of ~ 5.1 #m and apparently no grain-boundary 
glassy phase [56]. The correlation in Fig. 3 was 
achieved using the slowest moving species, D~ (Si 4+) 
(~), as rate-controlling. In practice, the experimental 
creep rates may be affected by boron-carbon additions, 
but this should make the rates faster, rather than 
slower, than the predicted values. 

3. C e r a m i c s  e x h i b i t i n g  n ~ 3 t o  5 
3.1. Creep mechanisms 
Many ceramic materials exhibit stress exponents of 

3 to 5 and creep rates which are independent of the 
grain size. As noted in Part 1 [1], this behaviour is 
attributed to the intragranular motion of dislocations. 
Many theoretical creep mechanisms have been devel- 
oped to explain these high stress exponents and a 
detailed tabulation was presented in Part 1. For the 
present purpose, it is sufficient simply to summarize 
the important characteristics of those mechanisms 

6 

which appear to be of major importance in the creep 
of ceramics. 

It is well established that many metals exhibit a 
stress exponent close to 5. This behaviour is usually 
interpreted in terms of the glide and climb of intra- 
granular dislocations, where the dislocations pile-up 
and the climb process is rate-controlling. The steady- 
state creep rate for this mechanism is given by [64] 

B 2 f~ D~ ~r 4~5 

= G3.SMO.Sb3.SkT (12) 

where M is the concentration of active dislocation 
sources and B 2 is a constant. 

Assuming that the piled-up arrays of dislocations 
decompose into groups of dislocation dipoles [65], the 
value of B2 is in the range 0.015 to 0.33 [66]. Thus, 
taking B2 = 0.2, Equation 12 reduces to 

0.14 ( Ol Gb ) ( G)45 
- b,~M05 \ - - ~ -  (13) 

Equation 13 includes the lattice diffusivity, D~, and 
it assumes that the diffusion involved in the climb 
process occurs exclusively through the crystalline 
lattice. This is true at temperatures above about 
0.5 Tin, where Tm is the melting temperature in degrees 
Kelvin, but it breaks down at lower temperatures 



where pipe diffusion along the dislocation cores 
becomes dominant. (The advent of pipe diffusion 
leads to a decrease in the activation energy for creep 
at lower testing temperatures; see, for example, results 
on polycrystalline NaC1 [67, 68].) To avoid these 
difficulties, all of the experimental data correlated 
in Section 3.2 for ceramics exhibiting n -~ 5 were 
obtained at temperatures above 0.6 Tin, and the 
appropriate diffusion coefficient was taken for the 
slower moving species through the lattice. 

Two mechanisms should be considered in exam- 
ining the creep behaviour of ceramic materials where 
F/ ~'~ 3. 

First, there is much evidence for a stress exponent 
close to 3 in many metallic solid solution alloys, and 
this is usually interpreted in terms of a glide and climb 
process controlled by glide due to the viscous dragging 
of solute atom atmospheres around the dislocations. 
The steady-state creep rate for this process is given by 
[69, 70] 

re(1 -- #)kT/sa 3 
= 6e 2 cb 5 G4 (14) 

where # is Poisson's ratio,/5 is the solute interdiffusion 
coefficient, e is the solute-solvent size difference and c 
is the concentration of solute. 

Taking # = 0°34, Equation 14 reduces to 

_ 0.35 { 
eec \ - ~ J  ( k T  ] ( G (15) 

A more recent model for this process, based on a 
homogeneous distribution of edge dislocations, also 
leads to Equation 15 but with the numerical factor of 
0.35 replaced by 0.125 [71]. 

Equation 15 was derived for the drag of solute atom 
atmospheres. However, most ceramics exhibiting 
n - 3 contain no solute, and it is therefore necessary 
to invoke either charged vacancy drag or charged 
impurity drag due to the higher polarizability of the 
constituent ions in these materials [72]. A problem 
associated with charged vacancy drag is that, if 
vacancy diffusion is rate-controlling,/5 in Equation 14 
is replaced by the vacancy diffusion coefficient, Dv, 
and because Dv -- D1/Nv, where Nv is the vacancy 
concentration, and c is now equal to Nv in Equation 
14, the steady-state creep rate is proportional to 
D~/N 2 . Because Nv is very small in most ceramics, this 
necessitates a strong interaction force. Thus, it is 
more likely that drag is controlled by impurity ion 
diffusion, but the relevant impurity diffusion coef- 
ficients are not generally known and it was therefore 
not possible to include this mechanism in the corre- 
lation of creep data. 

Second, if creep is controlled by the climb of dis- 
locations from Bardeen-Herring sources, the creep 
rate is given by [73] 

B 3 ~ '~D 1 o -3 
- G2b2kT (16) 

where B 3 is a constant having a value of ~ 0.1 [74]. 
Equation 16 reduces to 

= 0.22 ~ (17) 

where D~ is for the slower moving species in the lattice. 
Because all of the various terms in Equation 17 are 
known, the theoretically predicted creep rate may be 
included in a direct comparison with the experimental 
data. This comparison is contained in the following 
section. 

3.2. Correlat ion b e t w e e n  var ious  materials  
Figs 5 to 9 show a detailed compilation of creep data 
for ceramic materials exhibiting stress exponents of 

3-5. Figs 5 and 6 are for materials where n is close 
to 5 and Figs 7 to 9 are for materials where n is close 
to 3. All of the datum points are plotted in the form 
~kT/DGb against a/G, with D taken as the lattice 
diffusion coefficient for the slower moving species. As 
previously, Table I lists the relevant data for D, G 
and b. 

For n = 5, Fig. 5 shows data for NaC1 [67], LiF 
[75], KC1 [76], UC [77], and reaction-sintered (RS) 
SiC [78] using values for D of Di (C1) ,  /)1 (F-) ,  Dl 
( C l ) ,  O 1 (U 4+) and D 1 (Si 4+) (a), respectively, and 
Fig. 6 shows data for UO2 [58, 60, 61, 63] and ThO2 
[58] using DI (U 4+) and/)1 (Th4+), respectively. For 
n -~ 3, Fig. 7 shows data for A1203 [47, 52, 79, 80] and 
Fe203 [81] using D~ (02-) for both materials, Fig. 8 
shows data for MgO [49, 82, 83] and BeO [84] using/)1 
(02 ) and chemically vapour deposited (CVD) SiC 
[85] using DI (Si 4+ ) (fl), and Fig. 9 shows data for ZrO2 
containing 10% Y203 [86] using/)1 (Zr  4+). (For the 
CVD-SiC in Fig. 8, it was reported that there was a fl 
to a ratio of approximately 60:40 for both the as- 
deposited material and the annealed and crept sam- 
ples [85]. Thus, Dt (Si 4+) was  taken for the dominant 
cubic fi-SiC phase. By contrast, the RS-SiC in Fig. 5 
was reported as almost totally a-SiC [78] so that D~ 
(Si 4+) was  taken for the a-SiC phase. ZrO2 is an 
unusual oxide because cation diffusion is slower than 
anion diffusion [45]. 

Inspection of Fig. 5 shows very good agreement 
between the creep data of several alkali halides. The 
lack of any dependence on grain size in the n - 5 
region is demonstrated by the similar datum points 
obtained on NaC1 [67] and LiF [75] using samples 
having grain sizes differing by more than an order of 
magnitude. The agreement is less satisfactory for UO2 
shown in Fig. 6 and the stress exponent varies from 

4 to ,-~ 6 in different investigations. The scatter in 
the UO2 data is probably due to variations in the 
degree of stoichiometry. 

As noted earlier, a stress exponent close to 5 
suggests that dislocation climb is the rate-controlling 
process. However, no attempt was made to compare 
the experimental data with the predictions of Equation 
13 because there are uncertainties in the value of M 
and, in addition, there is evidence that Equation 13 
should be modified to incorporate a dependence on 
the stacking-fault energy of the material, F. Experi- 
mental data on several fcc  metals show that the 
measured creep rates are proportional to (F/Gb) 3 [70], 
and this proportionality has been used to make 
reasonable estimates of the values of F in the alkali 
halides [87]. 

Figs 7 to 9 include broken lines showing the 
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prediction of Equation 17 for dislocations climb from 
Bardeen-Herring sources. The agreement between the 
theoretical predictions and the experimental data is 
excellent for BeO and CVD-SiC in Fig. 8 and ZrO2 in 
Fig. 9, and it is generally within an order of magnitude 
for the other materials. 

Fig. 7 includes creep data for A1203 single crystals 
with a 0 ° orientation (the 0 ° crystals have a stress axis 
perpendicular to the (0 0 0 1) basal plane) where basal 
and prismatic slip are suppressed [88]. Although 
pyramidal slip is possible in this single crystal con- 
figuration, there was no experimental evidence for 
pyramidal slip and, as shown in Fig. 7, there is 
excellent agreement with the predictions of dislocation 
climb from Bardeen-Herring sources. The higher 
creep rates observed in the polycrystalline AI203 in 
Fig. 7, and the scatter between the various sets of data, 
may be due to differences in the impurity levels of the 
different samples: information on the individual 
impurity levels was contained in Table AIII of Part 1 
[1]. 

Fig. 10 schematically summarizes the data for the 
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Figure 5 Normalized creep rate plotted against nor- 
malized stress for power-law creep in (zx) NaC1 [67], 
(o)  CiF [75], (v)  KC1 [76], ([3) UC [77] and (O)  
reaction-sintered (RS) SiC [78]. 

m 

iO -2 

n -~ 5 and n -~ 3 materials. Although the two sets of 
results are fairly similar in magnitude, the creep data 
exhibiting n ~- 3 tend to fall below the data exhibiting 
n -~ 5. This trend is interesting because the climb and 
glide processes associated with the glide and sub- 
sequent climb of dislocations, as represented by 
Equations 13 and 15, are sequential in nature such 
that the slower of the two processes is rate-controlling. 
This means that, for these two processes, there is an 
anticipated transition from n -- 5 at the lower stresses 
to n ~- 3 at the higher stresses, as seen, for example, 
in metallic solid solution alloys [89]. This anticipated 
trend is contrary to Fig. 10 where many of the results 
showing n - 5 lie at normalized strain rates which are 
faster than those associated with n -~ 3. 

This observation provides additional support 
negating the possibility of control by viscous glide and 
Equation 15 in these ceramics. Conversely, it provides 
further support for dislocation climb from Bardeen- 
Herring sources through Equation 17, because 
additional slip systems are necessary for a general 
glide-climb process and n = 5 behaviour, and these 
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Figure 6 Normalized creep rate plotted against 
normalized stress for power-law creep in U O  2 

[58, 60, 61, 63] and ThO 2 [58]. 

additional systems do not occur in the 0 ° A1203 single 
crystals [88] in Fig. 7 and they are less likely in the 
polycrystalline materials at the lower stresses. 

4. Substructural  characterist ics 
4.1. Subgrain size 
When metals deform by power-law creep with n ~ 5, 
the grains become divided into subgrains and the 
subgrain boundaries have very small angles of mis- 
orientation (typically < 2°). A detailed analysis of the 
published data for metals has established that the 
average subgrain size, 2, is related inversely to the 
applied stress [90]. Measurements show that the 
normalized subgrain size, 2/b, is given by 

= C (18) 

where ~ is a constant having a value close to 20 for all 
metals. 

To check the validity of Equation 18 for ceramics, 
Fig. 11 logarithmically plots 2/b against a/G for AgC1 
[91], LiF [92, 93], LiF containing 690p.p.m. Mg [92], 
(Mg, Fe)2SiO4 [94, 95], MgO [96], NaC1 [97-99], NaC1 

single crystals containing various doping levels of 
calcium [97] and polycrystalline NaC1 [67]. Where 
appropriate, Table I was used to provide the relevant 
values of b and the shear modulus, G, at the testing 
temperature; for AgC1, b = 3.92 x 10-Scm and G 
was estimated as 7.6 x 103MPa at the testing tem- 
perature of 581 K from measurements of the elastic 
constants [100]; for (Mg, Fe)2SiO4, b was taken as 
4.79 x 10 8cm and the value of G was already 
incorporated in the experimental report of Raleigh 
and Kirby [94] using published elasticity data [44]. 

Each line in Fig. 11 is drawn through a single set of 
datum points with a slope of - 1. Although there is 
some scatter in the individual datum points, there is 
excellent agreement with the form of Equation 18. 
Most of the data lie within a factor of two of the mean, 
except for LiF where the points lie within a factor of 
four. Using Equation 18, the value of ~ is of the order 
of 20 to 30 for ceramics, and this value is very similar 
to, but slightly higher than, the value of 20 for metals. 
The small difference in the apparent values of ~ for 
ceramics and metals is not significant because the 
precise value obtained for any material depends upon 
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Figure  7 Normalized creep rate plotted against 
normalized stress for power-law creep in Al203 
[47, 52, 79, 80] and Fe203 [81]: the short line is for 
A1203 single crystals in 0 ° orientation [88]. 

the experimental procedure. For  example, the data in 
Fig. 11 for AgC1 by Pontikis and Poirier [91] give 

-~ 23, whereas an earlier investigation on the same 
material by the same authors gave ~ --- 44 [10l]. This 
difference was ascribed by Pontikis and Poirier [91] to 
an improvement in the experimental procedure: 
whereas the datum points shown in Fig. 11 were 
obtained by using etch pitting to reveal the subgrain 
boundaries [91], the earlier results used electron 
imaging to reveal differences in the subgrain orien- 
tations [101]. 

There are three additional observations relating 
to Fig. 11. 

First, it is apparent that a subgrain structure is 
formed not only in materials exhibiting n -~ 5 such as 
LiF and NaC1 (as in Fig. 5) but also in MgO where 
n -~ 3 (as in Fig. 8). Furthermore, the observation of 
subgrain formation in single crystal MgO by Hfither 
and Reppich [96], as documented in Fig. II,  is sup- 
ported by similar qualitative reports of subgrain for- 
mation in polycrystalline MgO by Bilde-S6rensen 
[102] and Hurm and Escaig [103]. Thus, unlike metals, 
a subgrain structure is established in ceramics exhi- 
biting both n - 5 and n ~- 3. 

Second, Fig. II contains two points for the ortho- 
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rhombic mineral olivine, (Mg, Fe)2SiO4, using the 
data of Raleigh and Kirby [94] as subsequently amen- 
ded by Green and Radcliffe [95, 104] through obser- 
vations of a finer substructure. Evidence from solar- 
meteoritic atomic abundances and other geophysical 
data suggests that olivine comprises of the order of 
57% of the Earth's upper mantle [105], and it is there- 
fore interesting to note that the two points for olivine 
in Fig. 11 are in excellent agreement with the data for 
the alkali halides and MgO at lower stress levels. In 
addition, the data for ceramics in Fig. 11 are consist- 
ent with measurements of 2 and stress estimates in 
naturally deformed rocks [106]. Although this agree- 
ment appears to support the use of subgrain measure- 
ments as an indirect indicator of tectonic stresses in 
geological materials [107], it is necessary to exercise 
caution because of the possibility of  at least some 
subgrain stability when the stress level is reduced 
[108]. Evidence for subgrain stability following stress 
reductions is provided by laboratory experiments on 
AgC1 [91] and olivine [109]. 

Third, using an isolated observation of the subgrain 
size in deformed quartz rocks [110], White [111] esti- 
mated a value of ~ -~ 25 for minerals. This value is in 
excellent agreement with the data in Fig. 11, thereby 
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Figure 8 Normalized creep rate plotted against 
normalized stress for power-law creep in MgO 
[49, 82, 83], BeO [84] and chemically vapour 
deposited (CVD) SiC [85]. 

further confirming the close similarities in subgrain 
structures between ceramics, metals and minerals. 

4.2. Dislocation density within the subgrains 
In metals, a detailed analysis shows that the density of 
dislocations contained within the subgrains, ~, varies 
with o .2 [90]. The normalized dislocation density, b~ t/2, 
may be expressed as 

bQl/2 = I p ( G )  (19) 

where ~ is a constant having a value close to unity for 
all metals. 

To check the validity of Equation 19 for ceramics, 
Fig. 12 logarithmically plots b~ ~/2 against a/G for 
LiF [92], LiF containing 690p.p.m. Mg [92], MgO 
[96, 112, 113], NaC1 [98] and NaC1 containing 
1300 p.p.m. Ca [97]. The experimental values of ~ were 
taken from both etch pit studies (Qetoh) and trans- 
mission electron microscopy (OTEM), and Fig. 12 was 
constructed by making the reasonable assumption of 
o - QTEM -~ 2Qetch. The lines in Fig. 12 are drawn 
through single sets of datum points with a slope of 1. 

Although there are only a limited number of 
measurements of ~ in ceramics, it is apparent from 
Fig. 12 that all of the measurements agree with 
Equation 19 and 0 = 1 to within a factor of two. 
Thus, the agreement between metals and ceramics is 
excellent. 

A similar relationship has been reported also for 
minerals, with values of 0 of ~ 3 for olivine [114] and 
~ 2  for calcite [115]. 

4.3. Measurements of grain-boundary sliding 
Grain-boundary sliding refers to the movement of one 
grain over an adjacent grain under the action of  an 
applied stress during high-temperature creep. Although 
the precise atomistic mechanism leading to sliding is 
not fully understood, it is probably associated with the 
movement of dislocations along the planes of the grain 
boundaries. 

Several procedures are available for determining the 
contribution of grain-boundary sliding to the total 
strain [116]. This contribution is usually expressed as 
the ratio •gbs/St, where ~gbs is the strain due to grain- 
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Figure 9 Normalized creep rate plotted against 
normalized stress for power-law creep in ZrO2 
containing 10% Y203 [86]. 

boundary sliding and et is the total strain. An analysis 
of published data for metals shows that the magnitude 
of egb~/et tends to increase with decreasing stress 
and/or decreasing grain size [117]. 

Unfortunately, there are very few published 
measurements of egbs/~t in polycrystalline ceramics, 
and some investigations have used measuring 
procedures which are known to be unacceptable. For 
example, measurements on MgO [118] and a U-Pu  
carbide [119] were based on a grain-shape procedure 
which tends to overestimate the values of ~;gbs/et (this 
overestimation is confirmed by the reports of values of 
egbs/et of 100% and 80 to 100% for MgO [118] and the 
U-Pu  carbide [119], respectively) and measurements 
on CaCO3 were performed after testing at constant 
strain rate rather than constant stress [120]. 

Only two sets of measurements on ceramics were 
performed using the accepted standard procedures, 
and these data are summarized in Fig. 13 for A1203 
[52] and MgO [121], respectively. Although very few 
results are available, the data confirm that, as in 
metals, sliding increases in importance at the lower 
stress levels and also with a decrease in grain size. 
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5. A comparison of creep behaviour in 
ceramics and metals 

As already noted, there are many similarities between 
the creep behaviour of ceramics and metals. When the 
grain size is small, as in Figs 1 to 4, the stress exponent 
is 1 and there is reasonable agreement with the pre- 
dictions of Nabarro-Herr ing diffusion creep. At 
larger grain sizes, there is often a power-law behaviour 
with a stress exponent of either ~ 5 (Figs 5 and 6) or 

3 (Figs 7 to 9). 
Figs 14 and 15 show direct comparisons between 

ceramics and metals for the two groups of  ceramics 
where the values of n are 5 and 3, respectively; the 
broad hatched areas for ceramics are based on the 
experimental data documented in Figs 5 to 9, and the 
broad hatched areas for metals are based on the 
detailed compilations of data for nominally pure fc c 
metals and metallic binary solid solution alloys 
exhibiting n -~ 3, respectively [90]. 

Fig. 14 shows that the normalized creep rates, 
~kT/DGb, for ceramics are very similar to, but slightly 
higher than, the normalized creep rates for pure f c c  
metals. In fact, as noted by Takeuchi and Argon [122], 
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there are slight differences between the average nor- 
malized creep rates for fc  c, b c c and h c p metals. The 
slightly faster creep rates in ceramics may be due to 
ambipolar diffusion, because the charge separation 
between the slower and faster ions leads to an enhance- 
ment in diffusion of the slower moving species. Under 
these conditions, the rate of ionic diffusion controlling 
the creep process is slightly faster than the measured 
ionic diffusion coefficient. 

Although Fig. 15 suggests good agreement between 
the normalized creep rates of ceramics exhibiting a 
stress exponent of 3 and metallic solid solution alloys, 
this agreement is probably fortuitous. As noted 
earlier, there is excellent agreement in these ceramics 
between the experimental data and the predictions of 
the theory for dislocation climb from Bardeen- 
Herring sources. Furthermore, the experimental 
observations of subgrain formation in MgO with 
n ~- 3 [96, 102, 103] are contrary to microstructural 
observations on metallic solid solution alloys with 
n ~- 3 where the steady-state substructure consists of 
an essentially uniform distribution of dislocations 
without subgrain formation [108]. 

Figs. 16 and 17 show the substructural parameters, 
Z/b and b~ 1/2, for ceramics and metals; again, the 
hatched areas for ceramics are based on the data in 
Figs 11 and 12 and the metals data are based on the 
detailed compilation of Bird et al. [90]. 

The agreement between ceramics and metals in 
Figs 16 and 17 is excellent, and the ceramic data tend 
to extend the metals data to lower values of the 
normalized stress, (riG. The slightly higher values of 
for ceramics are not significant because of the experi- 
mental difficulties of obtaining an accurate measure of 
the subgrain size, 2. 

6. Discussion 
6.1. The similarity between ceramics and 

other materials 
There are many similarities between the creep behav- 
iour of  ceramics and metals. Both types of material 
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exhibit diffusion creep with n = 1 at low stresses and 
some form of dislocation creep with n ~> 3 at high 
stresses. In addition, Figs 16 and 17 show that the 
substructural features are similar in both classes of  
material. 

There are also many similarities between the creep 
of ceramics and the creep of minerals [123] and it is an 
accepted procedure to apply the mechanisms of both 
diffusion creep [124] and dislocation creep [125, 126] 
to the Earth's  mantle. Several minerals show a similar 
stress exponent close to 3 [127, 128] and with a 

decrease to an exponent of  1 at the lower stresses [14]. 
Furthermore, a stress exponent of  ~ 3 is observed also 
in polycrystalline ice [129] and again there is a tran- 
sition to n - 1 at low stress levels [130, 131]. Finally, 
it should be noted that a transition from n -~ 1 and a 
dependence on grain size at low stresses to n > 1 at 
high stresses applies also to the densification kinetics 
during the hot-pressing of ceramic powders (for 
example, the A1203-A1N system [132]). 

At first sight, it may appear  surprising that ceramics 
exhibit very similar high temperature deformation 
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behaviour to metals, because ceramics have high 
Peierls forces, low dislocation densities and the possi- 
bility of non-active slip systems. However, Fig. 17 
shows that the dislocation densities during steady- 
state creep of ceramics are comparable to those of 
metals, and, as in metals, the creep of ceramics is a 
diffusion-controlled process so that the normalized 
creep rates are fairly similar (Fig. 14). 

The diffusion coefficients of crystalline materials are 
related to the homologous temperature, T/Tm, where 
Tm is the absolute melting temperature of the material 
[133, 134], so that the creep rates may be related 
directly to the homologous testing temperature for 
both metals and ceramics. Fig. 18 was constructed 
from the tabulated data of Brown and Ashby [134] 
and it shows that, at the melting temperature where 
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Figure 17 A comparison of the range of 
normalized dislocation densities within the 
subgrains for ceramics and metals. 
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Tm/T = 1.0, the intrinsic diffusion rates of the slower 
moving species in the oxides are about an order of 
magnitude lower than those of f c c  metals. Because 
the activation energies for diffusion are also generally 
higher in the oxides than in the fc c metals, it follows 
that the creep rate of an oxide is lower than that of an 
fc c metal at a similar homologous temperature. 

Despite the overall similarities, there are two major 
differences between the creep of ceramics and the 
creep of metals. First, there are relatively few experi- 
mental observations of diffusion creep and n = 1 in 
metals whereas this is a common deformation mode in 
ceramics (Figs 1 to 4). Second, the power-law creep 
behaviour of ceramics divides into two categories, 
with stress exponents of ,-, 5 and ~-, 3, whereas pure 
metals consistently exhibit stress exponents close to 5. 
These two differences are examined in the following 
sections. 

6.2. The enhanced role of diffusion creep in 
ceramics 

As documented in Figs 1 to 4 and in Table AIII of 
Part 1 [1], diffusion creep with n = 1 is a common 
mode of behaviour in ceramics. Under some experi- 
mental conditions, the advent of concurrent grain 
growth precludes the possibility of establishing a true 
steady-state behaviour at low stresses [135], but in 
many experiments it has been possible to conclusively 
establish a stress exponent very close to 1. When 
experiments are conducted over a wide range of stress, 
there is also a clear transition to n > 1 at the higher 
stress levels [136]. 

The enhanced role of diffusion creep in ceramics is 
often attributed to the high Peierls force or the lack of 
sufficient slip systems for homogeneous plastic defor- 
mation. Inspection shows, however, that these reasons 
are incorrect. Instead, the prevalence of diffusion 
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Figure 19 Schematic illustration of normalized creep rate plot- 
ted against normalized stress to explain the enhanced role of 
diffusion creep in ceramics, assuming Dcation/Danio n = 10 2, *1 #m if 
O c a d o  n = D a n i o  n . 

creep arises because of two factors which are illus- 
trated in Fig. 19 in a schematic plot of normalized 
creep rate, ~.kT/DGb, against normalized stress, a/G. 

First, it is important to recognize that the grain- 
boundary mobilities in ceramics are lower than in 
metals so that it is easier to stabilize, and maintain, a 
very fine grain structure. Whereas most metals (and 
especially pure metals) have grain sizes of 100/~m or 
larger, many ceramics have stable grain sizes of the 
order of 10#m (Figs 1 to 4). As indicated in Fig. 19, 
diffusion creep with n = 1 extends to higher values of 
a/G when the grain size is reduced, and at the same 
time the creep rates also become faster and more 
amenable to experimental measurement. The stress 
range of diffusion creep is further extended in ceramics 
such as A1203 and MgO where n ~- 3 at high stresses 
instead o f n  - 5; using the trends in Figs 14 and 15, 
the hatched area in Fig. 19 indicates the extra range of 
stress available for diffusion creep when n - 3 in the 
power-law region. 

Second, diffusion creep becomes important in many 
ceramics because of the preferential enhancement of 
diffusion of one of the ionic species along the grain 
boundaries. As noted in Section 3, the faster lattice 
diffusion coefficient for the cation usually dominates 
in diffusion creep whereas the slower lattice diffusion 
coefficient for the anion is usually dominant when the 
stress exponent is 3 or 5. Assuming a reasonable value 
of Ocation/Oanio n = l 0  2, Fig. 19 shows that diffusion 
creep dominates in a ceramic material with a grain size 
of 100#m up to a normalized stress of a/G ~- 10 -4, 
and smaller grain sizes extend diffusion creep to even 
higher stresses. However, if Dcation = /)anion, which is 
equivalent to a metal with a single diffusing species, 
the transition takes place at cr/G ~- 10 -4 with a grain 
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size of only 1 #m so that the meaningful stress range 
for diffusion creep is very much reduced. 

It is possible to estimate the upper limiting value of 
a/G associated with diffusion creep controlled by 
cation lattice diffusion by equating k in Equation 4 
with ~ in Equations 13 and 17 for n = 5 and n = 3, 
respectively. For materials exhibiting n = 5 the upper 
limit is given by 

ff 1.7bM°'14(Dcatio.) °29 
G - d0.57 , ~  (20) 

and for materials exhibiting n = 3 the upper limit is 

O-=  6.5(_b~(Dcation']°" (21) 
a \ dJ \Danion// 

6.3. The signi f icance of the stress exponents 
of ,-~ 5 and --~ 3 in ceramics 

In the power-law regime of creep, ceramic materials 
divide into two categories with stress exponents close 
to 5 and 3, respectively. The behaviour with n ~- 5 is 
very similar to pure f c c  metals, as noted in Fig. 14. 
However, the behaviour with n ~- 3 cannot be inter- 
preted in terms of a solute drag process, as in metallic 
solid solution alloys where n ~- 3, for three reasons: (i) 
there is generally little or no solute, (ii) there are 
observations of subgrain formation in MgO with 
n -~ 3 [96, 102, 103] although this is inconsistent with 
the viscous drag mechanism, and (iii) unlike metallic 
solid solutions [137], there is no experimental evidence 
for a transition from n -~ 3 to n -~ 5 with decreasing 
stress due to the sequential nature of the viscous glide 
and climb processes. It is therefore necessary to 
examine more closely the significance of the n - 3 
behaviour. 

It was noted earlier [72] that the ratio of the anion 
to cation radius, ranio n/rcation , appears to be important, 
such that ceramics with n -~ 3 have ranion/rcation > 2 and 
ceramics with n --- 5 have ranion/rcation < 2. Because 
this ratio is related to the polarizability of the material, 
it leads to the more general conclusion that n ~- 3 
behaviour is associated with either a lack of five 
independent slip systems and general inhomogeneous 
plastic deformation or, if five independent slip systems 
are available, a lack of interpenetration of these sys- 
tems. Thus, it is concluded, as noted by Wilshire and 
co-workers [138, 139], that n - 5 is associated with 
fully ductile behaviour and n -~ 3 is associated with 
plastic creep deformation in a less ductile condition. 

A final problem concerns the precise mechanism of 
flow in ceramics when n -~ 3. 

As noted in Fig. 7, there is excellent agreement 
between the experimental data for AI203 single crystals 
with a 0 ° orientation and the prediction of Equation 
17 for dislocation climb from Bardeen-Herring 
sources. Because these crystals were tested under con- 
ditions where there was no basal or prismatic slip, and 
because there was also no experimental evidence for 
pyramidal slip, this agreement provides strong sup- 
port for this creep mechanism. 

The situation for the polycrystalline materials is less 
clearly defined, although for some materials, such as 
BeO, CVD-SiC and ZrO2, there is very close agree- 
ment between the experimental data and the theoretical 
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prediction. The datum points for polycrystalline A1203 
are scattered above the theoretical line, as shown in 
Fig. 7, and this may be due to the differences in the 
impurity levels of the various materials or to the 
advent of a different creep mechanism. 

Evans and Knowles [140] developed a creep mech- 
anism based on the climb of dislocation links in a 
three-dimensional model, where strain is produced by 
glide of the edge dislocations. This mechanism con- 
trasts with Equation 16 and the climb of dislocations 
from Bardeen-Herring sources where it is assumed 
that climb contributes exclusively to the creep strain. 
This mechanism leads to a strain rate which is similar 
to Equation 16 but almost two orders of magnitude 
faster. Subsequently, Evans and Knowles [141] showed 
that this mechanism provides reasonable agreement 
with experimental data on AI203 but it overestimates 
the creep rates in MgO. Evans and Knowles [141] also 
compared their creep mechanism with experimental 
data for LiF and UO2 but, as noted in Figs 5 and 6, 
these materials exhibit n - 5 behaviour. These con- 
clusions are consistent with Figs 7 and 8 when it is 
noted that the datum points for A1203 are more widely 
displaced from the theoretical line for dislocation 
climb. It follows also from Figs 8 and 9 that this creep 
mechanism is not consistent with the experimental 
data for BeO, CVD-SiC or ZrO2. 

Based on this analysis, and especially the excellent 
agreement for A1203 single crystals in 0 ° orientation, it 
is concluded that the creep of ceramics exhibiting n -~ 3 
is due to the climb of dislocations from Bardeen- 
Herring sources under conditions where crystal- 
lographic slip is restricted. As noted by Groves and 
Kelly [142], general deformation may take place 
through the operation of Bardeen-Herring sources 
when only a limited number of slip systems is avail- 
able. The slightly higher creep rates observed in some 
polycrystalline ceramics may be due to differences in 
impurity levels and/or they may be due to additional 
contributions from other creep processes such as 
restricted slip or the occurrence of grain-boundary 
sliding. In MgO, for example, some of the specimens 
documented in Fig. 8 show sliding contributions of the 
order of 10%, as shown in Fig. 13, and this leads to an 
enhancement of the overall creep rate. 

Finally, it should be noted that the stress exponent 
of ~ 5  in pure polycrystalline NaC1 and KC1 is 
reduced to ~ 3 in solid solution alloys having com- 
positions in the range from NaC1 27mol % KC1 to 
KCI-16.8mol%NaC1 [76]. For these alloys, the 
observation ofn  ~ 3 is probably due to a true viscous 
drag process, as in metallic solid solutions, and calcu- 
lations indicate a consistency with the criterion devel- 
oped to predict viscous glide behaviour in metals [143]. 

7. Conclusions 
Part 2 may be summarized briefly as follows: 

1. There are many similarities between the creep of 
ceramics and metals. These similarities include dif- 
fusion creep with a stress exponent of n = 1 at low 
stresses, power-law creep with n ~> 3 at high stresses, 
an inverse relationship between the subgrain size and 
the applied stress, a, a dislocation density within the 



subgrains varying with a2, and a contribution from 
grain-boundary sliding which increases with a decrease 
in stress and/or grain size. 

2. The two major differences in the creep of cer- 
amics are (i) the enhanced role of diffusion creep and 
(ii) the division of creep behaviour into two categories 
in power-law creep with stress exponents of ~ 5 and 

3, respectively. The behaviour with n -~ 5 is inter- 
preted as fully ductile behaviour as in pure fc c metals, 
and the behaviour with n -~ 3 is interpreted as dislo- 
cation climb from Bardeen-Herring sources under 
conditions where there is either a lack of five indepen- 
dent slip systems and general inhomogeneous defor- 
mation or, if five independent slip systems are avail- 
able, a lack of interpenetration of these systems., 
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